MATHEMATICS(A)

Nationality	No.		
Name	(Please print full name, underlining family name)	Marks	

1. Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.

- (1) If we make a sequence selecting three elements from three different elements {1,2,3} and we permit overlapped elements for the sequence, then the total number of sequences is [1-1]. If we do not take into account the order, the total number of the selections is [1-2].
- (2) With a two dimensional surface, if we take (2, 1) as the center point and consider a transformation with a rotation angle of 45°, then point (3, 3) is transformed into point [1-3].
- (3) The graph of cubical function

$$y = [1-4] x^3 + [1-5] x^2 + [1-6] x + [1-7]$$

goes through the points (0, 1), (-1, -2), (1, 2), (2, 9).

(4) If a function f(x) in the domain $x \in [0, 2]$ is

$$f(x) = |x-1| + |x^2 - 2x|,$$

then the minimum value is 1-8 and the maximum one is 1-9.

(5) Under the condition $2x^2 + y^2 = 4$ for real numbers x, y, the maximum value of $4x + y^2$ is [1-10] and the minimum one is [1-11].

- (6) There are five white balls and three red balls. If we put these eight balls in a row with no adjoining red balls, then the number of these arrangements is [1-12]. If we put these eight balls in a row with adjoining red balls, then the number of possible arrangements is [1-13].
- (7) Binary number 10100101 is equal to decimal number [1-14]
- (8) $2 \log_{10} 2 2 \log_{10} 5$ is written as a single logarithm $\log_{10} | [1-15] |$.
- (9) The shortest distance from O(0, 0) to the line passing through A(2, 3) and B(3, 5) is [1-16].
- (10) For triangle ABC with AB=6cm, BC=7cm and $\angle BAC=60^{\circ}$, CA=[1-17] cm.

2. Consider a parabola $y = x^2$. Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.

(1) The line that goes through the point $(0, \frac{3}{2})$ and is orthogonal to a tangent line to the part of parabola $y = x^2$ with x > 0 is

$$y = \boxed{[2-1]} x + \frac{3}{2}, \qquad (*)$$

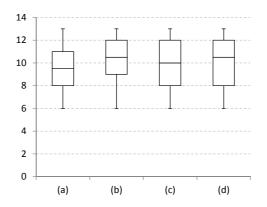
and x-coordinate of the intersection of the above two lines is [2-2]

(2) With respect to the intersection, it holds that

$$\int_0^{\left\lfloor [2-2] \right\rfloor} x^2 \, dx. = \left[[2-3] \right]$$

Let S_1 be the value of this area.

- (3) Letting S_2 be the value of the region surrounded with the line (*), this parabola, and the line x = 0 implies $S_2 = \boxed{2-4}$.
- (4) The ratio of S_2 to S_1 is


$$\frac{S_2}{S_1} = \boxed{[2-5]}.$$

3. The table below shows the scores of 10 students for Questions A and B in the examination.

											Mean	SD*
Question A	3	5	6	4	[3-1]	1	7	7	8	3	5.0	2.1
Question B	3	5	6	4	5	8	6	5	5	3	[3-3]	[3-5]
Total	6	10	12	8	[3-2]	9	13	12	13	6	[3-4]	2.5
(* SD: Standard deviation)												

By using the data, answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.

- (1) Answer the appropriate numbers for [3-1] [3-5] in the table. Note that the mean and the standard deviation are calculated to 1 decimal place.
- (2) Choose the boxplot for the total score among (a)–(d) | [3-6] |

- (3) Choose the condition of correlation coefficient r between scores of Questions A and B among (a)–(e) [3-7].
 - (a) r < -0.6, (b) $-0.6 \le r < -0.2$, (c) $-0.2 \le r < 0.2$, (d) $0.2 \le r < 0.6$, (e) $r \ge 0.6$